Los investigadores de USC Viterbi han colaborado en un nuevo recurso para el futuro del aprendizaje de IA, para definir cómo la IA y los robots pueden aprender y adaptarse como criaturas vivas. Crédito:Pixabay
Si una computadora podría pasar alguna vez por un ser vivo es uno de los desafíos clave para los investigadores en el campo de la Inteligencia Artificial. Ha habido grandes avances en la IA desde que Alan Turing creó por primera vez lo que ahora se llama la Prueba de Turing, si una máquina podría exhibir un comportamiento inteligente equivalente o indistinguible del de un humano. Sin embargo, las máquinas aún luchan con una de las habilidades fundamentales que es una segunda naturaleza para los humanos y otras formas de vida:el aprendizaje permanente. Es decir, aprender y adaptarse mientras estamos haciendo una tarea sin olvidar tareas anteriores, o transferir intuitivamente el conocimiento obtenido de una tarea a otra área.
Ahora, con el apoyo del programa DARPA Lifelong Learning Machines (L2M), los investigadores de USC Viterbi han colaborado con colegas de instituciones de todo EE. UU. y el mundo en un nuevo recurso para el futuro del aprendizaje de IA, definiendo cómo los sistemas artificiales pueden pensar con éxito. , actuar y adaptarse en el mundo real, de la misma manera que lo hacen los seres vivos.
El artículo, escrito en coautoría por la profesora de ingeniería eléctrica e informática de Dean, Alice Parker, y el profesor de ingeniería biomédica, y de biokinesiología y fisioterapia, Francisco Valero-Cuevas y sus equipos de investigación, se publicó en Nature Machine Intelligence , en colaboración con la profesora Dhireesha Kudithipudi de la Universidad de Texas en San Antonio, junto con otras 22 universidades.
El equipo de investigación también incluyó al investigador postdoctoral en ValeroLab, Ali Marjaninejad, Ph.D. en Ingeniería Biomédica. candidato Darío Urbina, e Ingeniería Eléctrica Ph.D. candidato Suraj Chakravarthi Raja. El trabajo anterior de ValeroLab en el campo de la IA bioinspirada incluía una extremidad robótica controlada por IA impulsada por tendones similares a animales que pueden aprender a caminar sin conocimiento previo.
Valero-Cuevas dijo que el objetivo de esta publicación era proporcionar un recurso de referencia para los investigadores de IA en las próximas décadas, centrándose en el concepto de aprendizaje permanente en sistemas artificiales. El proyecto delineará el desarrollo de un nuevo tipo de inteligencia artificial que será fundamental para la tecnología de próxima generación, como automóviles autónomos, robots y drones autónomos y prótesis inteligentes, exoesqueletos y dispositivos portátiles.
El aprendizaje permanente es una colección de capacidades de inspiración biológica que damos por sentadas, como la capacidad de adquirir nuevas habilidades sin comprometer las antiguas, adaptarnos a los cambios y aplicar los conocimientos adquiridos previamente a nuevas tareas.
"La forma en que usted y yo aprendemos es a través de la experiencia, la imitación y la autoexploración, y el hecho de que aprenda una nueva tarea no significa que olvide las tareas anteriores", dijo Valero-Cuevas. "Los humanos aprenden en el trabajo. Aparecemos y comenzamos a aprender y luego sabemos cómo hacerlo. Las máquinas aún no".
Valero-Cuevas dijo que las máquinas se pueden programar a través de un algoritmo. Por ejemplo, un automóvil autónomo puede usar algoritmos que se alimentan de datos de otros vehículos para que pueda aprender a operar, antes de desplegarse en el mundo.
"Pero hay una diferencia muy clara entre el entrenamiento y la implementación. Cuando se implementa una máquina, no necesariamente está aprendiendo, y si quieres enseñarle algo nuevo, por lo general tienes que borrar la memoria y olvida cómo hacerlo". cosa previa", dijo Valero-Cuevas.
Este es un problema conocido como "olvido catastrófico", que es una de las deficiencias clave de los sistemas de IA actuales que destaca el nuevo plan.
"Como humano, podrías mostrarme cómo jugar al ping pong, y luego puedo usar esa habilidad y transferirla para aprender a jugar al tenis o al bádminton". dijo Valero Cuevas. "Por el momento, a una máquina solo se le podría enseñar cómo jugar un deporte de raqueta, como el ping pong. Si quieres, por ejemplo, jugar tenis que requiera que uses tu cuerpo de manera diferente, tienes que cambiar el programa. "
Además de superar el factor del olvido catastrófico, el plan de los investigadores describió una serie de otras competencias que son necesarias para que los sistemas artificiales logren el aprendizaje permanente de la misma manera que los seres vivos. Estos incluyen:
Experto en el campo de los circuitos inspirados en la biología, Parker tiene una larga historia de investigación en la observación del cerebro humano para comprender cómo funciona y cómo se puede aplicar este conocimiento a los sistemas artificiales. Para este último artículo, Parker aportó conocimientos en el área de la neuromodulación:el sistema en el cerebro de los seres vivos que ayuda a mejorar el aprendizaje, a superar el problema del olvido catastrófico, a adaptarse a entornos inciertos y a comprender los cambios en el contexto. Parker se enfoca en construir estructuras electrónicas que respalden circuitos neuromórficos (electrónica que modela el cerebro) agregando características biológicas que no se encuentran en el hardware de redes neuronales existente, pero que respaldan el aprendizaje permanente. Las características incluyen astrocitos, otras células cerebrales que interactúan con las neuronas para apoyar el aprendizaje, y el código neuronal, picos y ráfagas que transmiten información en forma codificada.
Valero-Cuevas dijo que la colaboración pretendía ser un recurso integral para futuras investigaciones en aprendizaje automático e IA.
"La biología es la inspiración. El máximo ejemplo de aprendizaje permanente es un sistema biológico", dijo Valero-Cuevas. "Lo que estamos haciendo es observar todas las cosas que pueden hacer los sistemas biológicos, de las que tenemos una envidia suprema, y preguntarnos qué se necesitaría para que las máquinas lo hicieran".
"Creemos que al menos algunos mecanismos de la biología, las lecciones aprendidas durante millones de años de evolución, podrían ser traducidas y adoptadas por la IA", dijo.