Comprender la relación
La energía de un fotón (e) es directamente proporcional a su frecuencia (ν) e inversamente proporcional a su longitud de onda (λ). Esta relación se describe mediante la siguiente ecuación:
* e =hν =hc/λ
Dónde:
* e es la energía del fotón (en Joules)
* h es la constante de Planck (6.626 x 10^-34 j · s)
* ν es la frecuencia del fotón (en hertz)
* c es la velocidad de la luz (3 x 10^8 m/s)
* λ es la longitud de onda del fotón (en metros)
Resolver para la longitud de onda
1. Reorganizar la ecuación para resolver λ:
λ =HC / E
2. Conecte los valores:
λ =(6.626 x 10^-34 j · s) * (3 x 10^8 m / s) / (3.38 x 10^-19 J)
3. Calcule la longitud de onda:
λ ≈ 5.87 x 10^-7 m
Convertir a nanómetros:
Dado que las longitudes de onda a menudo se expresan en nanómetros (NM), convierta la respuesta:
* 1 metro =1 x 10^9 nanómetros
* λ ≈ 5.87 x 10^-7 m * (1 x 10^9 nm / 1 m)
* λ ≈ 587 nm
Por lo tanto, la longitud de onda de un fotón con una energía de 3.38 x 10^-19 J es aproximadamente 587 nanómetros.