• Home
  • Química
  • Astronomía
  • Energía
  • Naturaleza
  • Biología
  • Física
  • Electrónica
  •  Science >> Ciencia >  >> Astronomía
    ¿Cuál es el diámetro de una estrella si es un arco Angular 0.044 Arcos y la distancia 427 años luz?
    Aquí le mostramos cómo calcular el diámetro de una estrella utilizando su tamaño angular y distancia:

    1. Convertir unidades:

    * Tamaño angular: 0.044 Arcos. Tendremos que convertir esto a radianes:

    * 1 ArcSecond =4.84813681 × 10⁻⁶ radianes

    * 0.044 ArcSeconds =0.044 * (4.84813681 × 10⁻⁶) Radianos ≈ 2.13 × 10⁻⁷ radianes

    * Distancia: 427 años luz. Tendremos que convertir esto en medidores:

    * 1 año luz ≈ 9.461 × 10¹⁵ metros

    * 427 años luz ≈ 427 * (9.461 × 10¹⁵) metros ≈ 4.04 × 10¹⁸ metros

    2. Use la aproximación del ángulo pequeño:

    Para ángulos pequeños (como este), podemos usar la aproximación de ángulo pequeño:

    * θ ≈ (d / d)

    * Dónde:

    * θ es el tamaño angular en radianes

    * D es el diámetro real de la estrella

    * D es la distancia a la estrella

    3. Resolver el diámetro (d):

    * d =θ * d

    * d ≈ (2.13 × 10⁻⁷ radianes) * (4.04 × 10¹⁸ metros)

    * D ≈ 8.60 × 10¹¹ metros

    4. Convierta a una unidad más conveniente:

    * Convirtamos el diámetro de metros a radios solares:

    * 1 radio solar ≈ 6.957 × 10⁸ metros

    * D ≈ (8.60 × 10¹ estudie metros) / (6.957 × 10⁸ metros / radio solar)

    * D ≈ 1237 radios solares

    Por lo tanto, el diámetro de la estrella es aproximadamente 1237 veces el radio del sol.

    © Ciencia https://es.scienceaq.com