Un nuevo teorema muestra que la información que se ejecuta a través de un codificador de información, como un agujero negro, llegará a un punto en el que ningún algoritmo será capaz de aprender la información que se ha codificado. Crédito:Laboratorio Nacional de Los Alamos
Un nuevo teorema del campo del aprendizaje automático cuántico ha abierto un agujero importante en la comprensión aceptada sobre la codificación de información.
"Nuestro teorema implica que no seremos capaces de utilizar el aprendizaje automático cuántico para aprender procesos típicos aleatorios o caóticos". como los agujeros negros. En este sentido, pone un límite fundamental a la capacidad de aprendizaje de procesos desconocidos, "dijo Zoe Holmes, un postdoctorado en el Laboratorio Nacional de Los Alamos y coautor del artículo que describe el trabajo publicado hoy en Cartas de revisión física .
"Agradecidamente, porque la mayoría de los procesos físicamente interesantes son lo suficientemente simples o estructurados para que no se parezcan a un proceso aleatorio, los resultados no condenan el aprendizaje automático cuántico, sino resaltar la importancia de comprender sus límites, "Dijo Holmes.
En el clásico experimento mental de Hayden-Preskill, una Alicia ficticia arroja información, como un libro, a un agujero negro que revuelve el texto. Su compañera, Beto, todavía puede recuperarlo usando entrelazamiento, una característica única de la física cuántica. Sin embargo, El nuevo trabajo demuestra que las limitaciones fundamentales de la capacidad de Bob para aprender los detalles de la física de un agujero negro determinado significan que reconstruir la información del libro será muy difícil o incluso imposible.
"Cualquier información que se ejecute a través de un codificador de información, como un agujero negro, llegará a un punto en el que el algoritmo de aprendizaje automático se estancará en una meseta estéril y, por lo tanto, se volverá intransitable. Eso significa que el algoritmo no puede aprender los procesos de codificación, ", dijo Andrew Sornborger, científico informático de Los Alamos y coautor del artículo. Sornborger es Director del Centro de Ciencias Cuánticas en Los Alamos y líder de los algoritmos y el impulso de simulación del Centro. El Centro es una colaboración multiinstitucional dirigida por el Laboratorio Nacional Oak Ridge .
Las mesetas estériles son regiones en el espacio matemático de los algoritmos de optimización donde la capacidad de resolver el problema se vuelve exponencialmente más difícil a medida que aumenta el tamaño del sistema que se está estudiando. Este fenómeno, que limita severamente la capacidad de entrenamiento de las redes neuronales cuánticas a gran escala, fue descrito en un artículo reciente por un equipo relacionado de Los Alamos.
"Un trabajo reciente ha identificado el potencial del aprendizaje automático cuántico como una herramienta formidable en nuestros intentos de comprender sistemas complejos, "dijo Andreas Albrecht, coautor de la investigación. Albrecht es Director del Centro de Matemática y Física Cuánticas (QMAP) y Profesor Distinguido, Departamento de Física y Astronomía, en UC Davis. "Nuestro trabajo señala consideraciones fundamentales que limitan las capacidades de esta herramienta".
En el experimento mental de Hayden-Preskill, Alice intenta destruir un secreto, codificado en un estado cuántico, lanzándolo al codificador más rápido de la naturaleza, un agujero negro. Bob y Alice son el dúo dinámico cuántico ficticio que suelen utilizar los físicos para representar agentes en un experimento mental.
"Podrías pensar que esto haría que el secreto de Alice fuera bastante seguro, "Holmes dijo, "pero Hayden y Preskill argumentaron que si Bob conoce la dinámica unitaria implementada por el agujero negro, y compartir un estado de enredo máximo con el agujero negro, es posible decodificar el secreto de Alice recolectando algunos fotones adicionales emitidos por el agujero negro. Pero esto genera la pregunta, ¿Cómo podría Bob aprender la dinámica implementada por el agujero negro? Bien, no mediante el uso del aprendizaje automático cuántico, de acuerdo con nuestros hallazgos ".
Una pieza clave del nuevo teorema desarrollado por Holmes y sus coautores asume que no hay conocimiento previo del codificador cuántico, una situación poco probable que ocurra en la ciencia del mundo real.
"Nuestro trabajo llama la atención sobre la tremenda influencia que incluso pequeñas cantidades de información previa pueden jugar en nuestra capacidad para extraer información de sistemas complejos y potencialmente reducir el poder de nuestro teorema, ", Dijo Albrecht." Nuestra capacidad para hacer esto puede variar mucho entre diferentes situaciones (ya que escaneamos desde la consideración teórica de los agujeros negros hasta situaciones concretas controladas por humanos aquí en la tierra). Es probable que la investigación futura arroje ejemplos interesantes, ambas situaciones en las que nuestro teorema permanece plenamente en vigor, y otros en los que se puede eludir.