• Home
  • Química
  • Astronomía
  • Energía
  • Naturaleza
  • Biología
  • Física
  • Electrónica
  • Cómo resolver razones algebraicas

    Las razones comparan dos números o cantidades por división. Las proporciones a menudo se parecen a fracciones, pero se leen de manera diferente. Por ejemplo, 3/4 se lee como "3 a 4". A veces, verá proporciones escritas con dos puntos, como en 3: 4. Siga leyendo para descubrir cómo resolver problemas de relación algebraica usando dos métodos: razones equivalentes y multiplicación cruzada.

    Usando razones equivalentes

    Cuando comience a estudiar las razones por primera vez, encontrará problemas de relación equivalentes . La palabra equivalente significa igual valor. Probablemente te hayas encontrado con este término cuando aprendiste sobre fracciones. Las fracciones equivalentes son dos fracciones con el mismo valor. Por ejemplo, 1/2 y 4/8 son equivalentes porque ambos tienen un valor de 0.5. Las proporciones equivalentes son muy similares a las fracciones equivalentes.

    Usemos el siguiente problema como ejemplo para resolver problemas de relación equivalente: 5/12 = 20 /n. Primero, identifica el conjunto de términos con la variable. Una variable es una letra o un símbolo que representa un número. En este caso, el segundo conjunto de términos - 12 y n - tiene la variable. Tenga en cuenta que si estuviéramos hablando de fracciones, podríamos llamar a los números en el segundo conjunto "denominadores". Sin embargo, este término no se aplica a las proporciones. Usaremos el valor conocido en este conjunto (12) para determinar el valor de la variable (12).

    Para determinar la relación entre el segundo conjunto de términos en nuestra relación, primero debemos determinar la relación entre los valores en el primer conjunto. Esto debería ser relativamente fácil porque se conocen ambos valores en este conjunto: 5 y 20. Ahora, pregúntese: "¿Cómo se relacionan estos valores?" Debería poder multiplicar o dividir uno de los números por un número entero para obtener el segundo número. En este caso, sabemos que 5 por 4 es igual a 20. Esta será la clave para resolver la proporción.

    Una vez que haya determinado cómo se relacionan los términos en un conjunto, puede resolver la relación. Para crear una proporción equivalente, debe multiplicar o dividir ambos términos en la proporción por el mismo número entero. (Esta es la misma forma en que creamos fracciones equivalentes.) Entonces, volvamos a nuestro problema de 5/12 = 20 /n. Sabemos que si multiplicamos 5 por 4, obtendremos 20. Entonces, también debemos multiplicar 12 por 4 para encontrar el valor de n. Dado que 12 veces 4 es 48, n es igual a 48.

    Uso de multiplicación cruzada

    Cuando haya pasado a estudios más avanzados de proporciones, comenzará a encontrar proporciones. Las proporciones son declaraciones que muestran dos razones como equivalentes. Obviamente, las proporciones son muy similares a los problemas de proporción equivalente. Sin embargo, el método para resolver estos problemas es diferente. A menudo, los valores en proporciones no se prestan a la técnica descrita anteriormente. Usemos este problema como ejemplo: 7 /m = 2/4. Como no podemos multiplicar 2 por un número entero para obtener un producto de 7, no podremos resolver este problema utilizando la técnica de relación equivalente. En cambio, realizaremos una multiplicación cruzada.

    Para resolver la proporción, comenzaremos identificando productos cruzados. Los productos cruzados son los términos situados en diagonal entre sí cuando las relaciones se escriben verticalmente. Imagine colocar una "X" sobre la proporción. La "X" conectará términos diagonales, que se multiplicarán. En nuestro problema, los productos cruzados son 7 y 4, ym y 2.

    Una vez que se han identificado los productos cruzados, use la multiplicación cruzada para escribir una ecuación. Esto simplemente significa escribir los dos productos cruzados como términos multiplicados con un signo igual entre ellos. Para el problema anterior, nuestra ecuación es 7x4 = 2xm.

    Ahora que tenemos una ecuación, podemos comenzar a resolver la proporción. Primero, simplifique el lado de la ecuación con dos valores conocidos. En este caso, podemos simplificar 7 veces 4 como 28. Nuestra ecuación es ahora 28 = 2xm.

    Finalmente, use operaciones inversas para resolver m. Las operaciones inversas son opuestas; la suma y la resta son opuestos, y la multiplicación y la división son opuestos. Como nuestra ecuación usa la multiplicación, usaremos la operación inversa - división - para resolver. Nuestro objetivo es aislar la variable, o hacerlo solo en un lado del signo igual. Por lo tanto, dividiremos ambos lados de nuestra ecuación por 2. Al hacerlo, se cancela el "2x" con la m. Dado que 28 dividido entre 2 es 14, nuestra respuesta final es m = 14.

    Sugerencia

    Después de resolver problemas de álgebra, siempre es una buena idea revisar su trabajo. Para hacer esto, sustituya su solución por la variable en el problema original. ¿Tu respuesta tiene sentido? De lo contrario, es posible que haya cometido un error de procedimiento o de cálculo en el camino.

    © Ciencia https://es.scienceaq.com