• Home
  • Química
  • Astronomía
  • Energía
  • Naturaleza
  • Biología
  • Física
  • Electrónica
  •  science >> Ciencia >  >> Otro
    Cómo simplificar expresiones racionales: paso a paso

    Antes de comenzar a simplificar o manipular expresiones racionales, tómese un momento para revisar cuál es la expresión racional en sí: una fracción con un polinomio tanto en el numerador como en el denominador. O, para decirlo de otra manera, una relación de un polinomio a otro. Una vez que haya identificado una expresión racional, el proceso de simplificación se reduce a tres pasos.
    Los pasos para simplificar expresiones racionales

    El proceso para simplificar funciones racionales sigue una hoja de ruta bastante simple. Lo primero que debe hacer es combinar términos similares, si aún no lo ha hecho, para ayudarlo a ver los polinomios con claridad.

    A continuación, factorice cada polinomio. A veces, todo lo que tienes que hacer es escribir cada término. Por ejemplo, está claro que 4x (que de hecho es un polinomio, aunque solo tiene un término) tiene dos factores: 4 y x. Pero con polinomios más complicados, su mejor herramienta a menudo es reconocer patrones para tipos específicos de polinomios que ya ha aprendido. Por ejemplo, si ha prestado mucha atención a sus fórmulas, puede recordar que un polinomio de la forma a 2 - b 2 se factoriza en (a + b) (a - b).

    Una vez que sus polinomios están completamente factorizados, el último paso es cancelar cualquier factor común que aparezca tanto en el numerador como en el denominador. El resultado es su polinomio simplificado.


    Consejos

  • ¿Qué sucede si los polinomios en su expresión racional no tienen una forma que sepa cómo factorizar fácilmente? ? Existen otras técnicas que puede usar para factorizarlas, como completar el cuadrado o usar la fórmula cuadrática.


    Una advertencia sobre el denominador

    Es posible que no se sorprenda al escuchar eso. Hay una pequeña trampa aquí. Por lo general, se supone que el dominio (o conjunto de posibles valores de x) para su expresión racional es el conjunto de todos los números reales. Pero si algo sucede para que el denominador de su fracción sea cero, el resultado es una fracción indefinida.

    ¿Qué haría que su denominador sea cero? Por lo general, un pequeño examen es todo lo que se necesita para descubrirlo. Por ejemplo, si el denominador de su fracción se ha reducido a los factores (x + 2) (x - 2), entonces el valor x \u003d -2 haría que el primer factor sea igual a cero, y x \u003d 2 haría que segundo factor igual a cero.

    De modo que ambos valores, -2 y 2, deben excluirse del dominio de su expresión racional. Por lo general, anotará esto con el signo "no igual" o ≠. Por ejemplo, si necesita excluir -2 y 2 del dominio, escribiría x ≠ -2, 2.
    Simplificando expresiones racionales: ejemplos

    Ahora que comprende el proceso de simplificación racional expresiones, es hora de ver un par de ejemplos.

    Ejemplo 1: Simplifique la expresión racional (x 2 - 4) /(x 2+ 4x + 4)

    No hay términos similares para combinar aquí, por lo que puede omitir ese primer paso. Luego, con sus ojos agudos y un poco de práctica, puede ver que el numerador y el denominador se pueden factorizar fácilmente:

    (x + 2) (x - 2) /(x + 2) (x + 2 )

    Quizás también descubras que (x + 2) es un factor tanto en el numerador como en el denominador. Una vez que cancele el factor compartido, quedará con:

    (x - 2) /(x + 2)

    Ha simplificado su expresión racional en la medida de lo posible, pero hay una cosa más que hacer: identificar cualquier "ceros" o raíces que resulten en una fracción indefinida, para que pueda excluirlos del dominio. En este caso, es fácil ver por examen que cuando x \u003d -2, el factor en la parte inferior será igual a cero. Entonces su expresión racional simplificada es en realidad:

    (x - 2) /(x + 2), x ≠ -2

    Ejemplo 2: Simplifique la expresión racional x /(x 2 - 4x)

    No hay términos similares para combinar, por lo que puede pasar directamente al factoring mediante un examen. No es demasiado difícil detectar que puedes factorizar una x del término inferior, lo que te da:

    x /x (x - 4)

    Puedes cancelar el factor x de ambos numerador y denominador, que lo deja con:

    1 /(x - 4)

    Ahora su expresión racional está simplificada, pero también necesita anotar cualquier valor de x que resulte en un indefinido fracción. En este caso, x \u003d 4 devolvería un valor de cero en el denominador. Entonces su respuesta es:

    1 /(x - 4), x ≠ 4

  • © Ciencia https://es.scienceaq.com