Una hoja de grafeno curvada y estirada que se coloca sobre otra hoja curva crea un nuevo patrón que afecta la forma en que la electricidad se mueve a través de las hojas. Un nuevo modelo sugiere que podría surgir una física similar si dos universos adyacentes pudieran interactuar. Crédito:Alireza Parhizkar, JQI
A los físicos a veces se les ocurren historias locas que suenan a ciencia ficción. Algunos resultan ser ciertos, como que la curvatura del espacio y el tiempo descrita por Einstein finalmente fue confirmada por mediciones astronómicas. Otros permanecen como meras posibilidades o curiosidades matemáticas.
En un nuevo artículo en Physical Review Research , el becario de JQI Victor Galitski y la estudiante graduada de JQI Alireza Parhizkar han explorado la posibilidad imaginativa de que nuestra realidad es solo la mitad de un par de mundos que interactúan. Su modelo matemático puede proporcionar una nueva perspectiva para observar las características fundamentales de la realidad, incluido por qué nuestro universo se expande de la manera en que lo hace y cómo se relaciona con las longitudes más minúsculas permitidas en la mecánica cuántica. Estos temas son cruciales para comprender nuestro universo y forman parte de uno de los grandes misterios de la física moderna.
La pareja de científicos tropezó con esta nueva perspectiva cuando investigaban sobre láminas de grafeno:capas atómicas individuales de carbono en un patrón hexagonal repetitivo. Se dieron cuenta de que los experimentos sobre las propiedades eléctricas de láminas de grafeno apiladas producían resultados que parecían pequeños universos y que el fenómeno subyacente podría generalizarse a otras áreas de la física. En las pilas de grafeno, surgen nuevos comportamientos eléctricos a partir de las interacciones entre las hojas individuales, por lo que tal vez la física única podría surgir de manera similar de las capas que interactúan en otros lugares, tal vez en las teorías cosmológicas sobre todo el universo.
"Creemos que esta es una idea emocionante y ambiciosa", dice Galitski, quien también es profesor de Física Teórica de la Cátedra Chesapeake en el Departamento de Física. "En cierto sentido, es casi sospechoso que funcione tan bien al 'predecir' de forma natural las características fundamentales de nuestro universo, como la inflación y la partícula de Higgs, como describimos en una preimpresión de seguimiento".
Las propiedades eléctricas excepcionales del grafeno apilado y la posible conexión con nuestra realidad de tener un gemelo provienen de la física especial producida por patrones llamados patrones muaré. Los patrones muaré se forman cuando dos patrones repetidos, desde los hexágonos de los átomos en las hojas de grafeno hasta las rejillas de las pantallas de las ventanas, se superponen y una de las capas se tuerce, desplaza o estira.
Los patrones que emergen pueden repetirse a lo largo de mucho tiempo en comparación con los patrones subyacentes. En las pilas de grafeno, los nuevos patrones cambian la física que se desarrolla en las láminas, en particular, el comportamiento de los electrones. En el caso especial llamado "grafeno de ángulo mágico", el patrón muaré se repite en una longitud que es unas 52 veces mayor que la longitud del patrón de las hojas individuales, y el nivel de energía que gobierna el comportamiento de los electrones cae precipitadamente, lo que permite nuevos comportamientos. , incluida la superconductividad.
Galitski y Parhizkar se dieron cuenta de que la física en dos láminas de grafeno podría reinterpretarse como la física de dos universos bidimensionales donde los electrones ocasionalmente saltan entre universos. Esto inspiró a la pareja a generalizar las matemáticas para aplicarlas a universos hechos de cualquier número de dimensiones, incluido el nuestro propio de cuatro dimensiones, y a explorar si un fenómeno similar resultante de patrones muaré podría aparecer en otras áreas de la física. Esto inició una línea de investigación que los puso cara a cara con uno de los principales problemas de la cosmología.
"Discutimos si podemos observar la física muaré cuando dos universos reales se fusionan en uno", dice Parhizkar. "¿Qué quieres buscar cuando haces esta pregunta? Primero tienes que saber la escala de longitud de cada universo".
Una escala de longitud, o una escala de un valor físico en general, describe qué nivel de precisión es relevante para lo que sea que esté mirando. Si estás aproximando el tamaño de un átomo, entonces importa una diez mil millonésima parte de un metro, pero esa escala es inútil si estás midiendo un campo de fútbol porque está en una escala diferente. Las teorías de la física imponen límites fundamentales a algunas de las escalas más pequeñas y más grandes que tienen sentido en nuestras ecuaciones.
La escala del universo que preocupaba a Galitski y Parhizkar se llama longitud de Planck y define la longitud más pequeña que es consistente con la física cuántica. La longitud de Planck está directamente relacionada con una constante, llamada constante cosmológica, que se incluye en las ecuaciones de campo de la relatividad general de Einstein. En las ecuaciones, la constante influye en si el universo, fuera de las influencias gravitatorias, tiende a expandirse o contraerse.
Esta constante es fundamental para nuestro universo. Entonces, para determinar su valor, los científicos, en teoría, solo necesitan mirar el universo, medir varios detalles, como qué tan rápido se alejan las galaxias, conectar todo en las ecuaciones y calcular cuál debe ser la constante.
Este sencillo plan se enfrenta a un problema porque nuestro universo contiene efectos tanto relativistas como cuánticos. El efecto de las fluctuaciones cuánticas en el vasto vacío del espacio debería influir en los comportamientos incluso a escalas cosmológicas. Pero cuando los científicos intentan combinar la comprensión relativista del universo que nos dio Einstein con las teorías sobre el vacío cuántico, se encuentran con problemas.
Uno de esos problemas es que cada vez que los investigadores intentan usar observaciones para aproximar la constante cosmológica, el valor que calculan es mucho más pequeño de lo que esperarían en base a otras partes de la teoría. Más importante aún, el valor salta dramáticamente dependiendo de la cantidad de detalles que incluyan en la aproximación en lugar de centrarse en un valor constante. Este desafío persistente se conoce como el problema de la constante cosmológica o, a veces, la "catástrofe del vacío".
"Esta es la inconsistencia más grande, con mucho la más grande, entre la medición y lo que podemos predecir mediante la teoría", dice Parhizkar. "It means that something is wrong."
Since moiré patterns can produce dramatic differences in scales, moiré effects seemed like a natural lens to view the problem through. Galitski and Parhizkar created a mathematical model (which they call moiré gravity) by taking two copies of Einstein's theory of how the universe changes over time and introducing extra terms in the math that let the two copies interact. Instead of looking at the scales of energy and length in graphene, they were looking at the cosmological constants and lengths in universes.
Galitski says that this idea arose spontaneously when they were working on a seemingly unrelated project that is funded by the John Templeton Foundation and is focused on studying hydrodynamic flows in graphene and other materials to simulate astrophysical phenomena.
Playing with their model, they showed that two interacting worlds with large cosmological constants could override the expected behavior from the individual cosmological constants. The interactions produce behaviors governed by a shared effective cosmological constant that is much smaller than the individual constants. The calculation for the effective cosmological constant circumvents the problem researchers have with the value of their approximations jumping around because over time the influences from the two universes in the model cancel each other out.
"We don't claim—ever—that this solves cosmological constant problem," Parhizkar says. "That's a very arrogant claim, to be honest. This is just a nice insight that if you have two universes with huge cosmological constants—like 120 orders of magnitude larger than what we observe—and if you combine them, there is still a chance that you can get a very small effective cosmological constant out of them."
In preliminary follow up work, Galitski and Parhizkar have started to build upon this new perspective by diving into a more detailed model of a pair of interacting worlds—that they dub "bi-worlds." Each of these worlds is a complete world on its own by our normal standards, and each is filled with matching sets of all matter and fields. Since the math allowed it, they also included fields that simultaneously lived in both worlds, which they dubbed "amphibian fields."
The new model produced additional results the researchers find intriguing. As they put together the math, they found that part of the model looked like important fields that are part of reality. The more detailed model still suggests that two worlds could explain a small cosmological constant and provides details about how such a bi-world might imprint a distinct signature on the cosmic background radiation—the light that lingers from the earliest times in the universe.
This signature could possibly be seen—or definitively not be seen—in real world measurements. So future experiments could determine if this unique perspective inspired by graphene deserves more attention or is merely an interesting novelty in the physicists' toy bin.
"We haven't explored all the effects—that's a hard thing to do, but the theory is falsifiable experimentally, which is a good thing," Parhizkar says. "If it's not falsified, then it's very interesting because it solves the cosmological constant problem while describing many other important parts of physics. I personally don't have my hopes up for that— I think it is actually too big to be true." Centenary of cosmological constant lambda