Las raíces cuadradas a menudo se encuentran en problemas de matemáticas y ciencias, y cualquier estudiante necesita aprender los conceptos básicos de las raíces cuadradas para abordar estas preguntas. "qué número, cuando se multiplica por sí mismo, da el siguiente resultado" y, como tal, resolverlas requiere que piense en los números de una manera ligeramente diferente. Sin embargo, puede comprender fácilmente las reglas de las raíces cuadradas y responder cualquier pregunta relacionada con ellas, ya sea que requieran un cálculo directo o simplemente una simplificación.
TL; DR (demasiado largo; no leído)
Una raíz cuadrada le pregunta qué número, cuando se multiplica por sí mismo, da el resultado después del símbolo √. Entonces √9 \u003d 3 y √16 \u003d 4. Cada raíz técnicamente tiene una respuesta positiva y negativa, pero en la mayoría de los casos la respuesta positiva es la que le interesará.
Puede factorizar raíces cuadradas al igual que los números ordinarios, entonces √ ab Las raíces cuadradas son lo opuesto a "cuadrar" un número, o multiplicarlo por sí mismo. Por ejemplo, tres al cuadrado es nueve (3 2 \u003d 9), entonces la raíz cuadrada de nueve es tres. En símbolos, esto es √9 \u003d 3. El símbolo "√" le dice que tome la raíz cuadrada de un número, y puede encontrarlo en la mayoría de las calculadoras. Recuerde que cada número tiene dos Se le puede pedir que tome la" raíz cúbica "o" cuarta raíz "de un número. La raíz cúbica es el número que, cuando se multiplica por sí mismo dos veces, es igual al número original. La cuarta raíz es el número que cuando se multiplica por sí mismo tres veces es igual al número original. Al igual que las raíces cuadradas, estos son justo lo contrario de tomar el poder de los números. Entonces, 3 3 \u003d 27, y eso significa que la raíz cúbica de 27 es 3, o ∛27 \u003d 3. El símbolo "∛" representa la raíz cúbica del número que viene después. Las raíces a veces también se expresan como potencias fraccionarias, entonces √ x Una de las tareas más difíciles que puede tener que realizar con raíces cuadradas es simplificar raíces cuadradas grandes, pero solo necesita seguir Algunas reglas simples para abordar estas preguntas. Puedes factorizar raíces cuadradas de la misma manera que factorizas números ordinarios. Entonces, por ejemplo, 6 \u003d 2 × 3, entonces √6 \u003d √2 × √3. Simplificar raíces más grandes significa tomar la factorización paso a paso y recordar la definición de una raíz cuadrada. Por ejemplo, √132 es una gran raíz, y puede ser difícil ver qué hacer. Sin embargo, puede ver fácilmente que es divisible por 2, por lo que puede escribir √132 \u003d √2 √66. Sin embargo, 66 también es divisible por 2, por lo que puedes escribir: √2 √66 \u003d √2 √2 √33. En este caso, una raíz cuadrada de un número multiplicado por otra raíz cuadrada solo da el número original (debido a la definición de raíz cuadrada), entonces √132 \u003d √2 √2 √33 \u003d 2 √33. En resumen, puede simplificar las raíces cuadradas usando las siguientes reglas √ ( a √ a Usando las definiciones y reglas anteriores, puedes encontrar las raíces cuadradas de la mayoría de los números. Aquí hay algunos ejemplos a tener en cuenta. No se puede encontrar directamente porque no es la raíz cuadrada de un número entero. Sin embargo, el uso de las reglas de simplificación da: √8 \u003d √2 √4 \u003d 2√2 Esto hace uso de la raíz cuadrada simple de 4 , que es √4 \u003d 2. El problema se puede resolver exactamente usando una calculadora, y √8 \u003d 2.8284 .... Usando el mismo enfoque, intenta resolver la raíz cuadrada de 12. Divida la raíz en factores y luego vea si puede volver a dividirla en factores. Intente esto como un problema de práctica y luego mire la solución a continuación: √12 \u003d √2√6 \u003d √2√2√3 \u003d 2√3 Nuevamente, esta expresión simplificada puede usarse en problemas según sea necesario, o calcularse exactamente usando una calculadora. Una calculadora muestra que √12 \u003d 2√3 \u003d 3.4641…. La raíz cuadrada de 20 se puede encontrar de la misma manera: √20 \u003d √2√10 \u003d √2√2√5 \u003d 2√5 \u003d 4.4721…. Finalmente, aborde la raíz cuadrada de 32 usando el mismo enfoque: √32 \u003d √4√8 Aquí, tenga en cuenta que ya calculamos la raíz cuadrada de 8 como 2√2, y que √4 \u003d 2, entonces: √32 \u003d 2 × 2√2 \u003d 4√2 \u003d 5.657 .... Aunque la definición de una raíz cuadrada significa que los números negativos no deberían tener una raíz cuadrada (porque cualquier número multiplicado por sí mismo da un número positivo como resultado), los matemáticos los encontraron como parte de los problemas de álgebra e idearon una solución. El número "imaginario" i Pruebe su comprensión del cuadrado raíces simplificando según sea necesario y luego calculando las siguientes raíces: √50 √36 √70 √24 √27 Intenta resolverlos antes de ver las respuestas a continuación: √50 \u003d √2 √25 \u003d 5√2 \u003d 7.071 √36 \u003d 6 √70 \u003d √7 √10 \u003d √7 √2 √5 \u003d 8.637 √24 \u003d √2 √12 \u003d √2 √2 √6 \u003d 2√6 \u003d 4.899 √27 \u003d √3 √9 \u003d 3√3 \u003d 5.196
\u003d √ a
√ b
, o √6 \u003d √2√3.
¿Qué es una raíz cuadrada?
raíces cuadradas. Tres multiplicado por tres es igual a nueve, pero tres negativo multiplicado por tres negativos también es igual a nueve, por lo que 3 2 \u003d (−3) 2 \u003d 9 y √9 \u003d ± 3, con el ± para “más o menos ". En muchos casos, puede ignorar las raíces cuadradas negativas de los números, pero a veces es importante recordar que cada número tiene dos raíces.
\u003d x
1/2 y ∛ x
\u003d x
1/3.
Simplificando raíces cuadradas
× b
) \u003d √ a
× √ b
× √ a
\u003d a
¿Cuál es la raíz cuadrada de ...
La raíz cuadrada de 8
La raíz cuadrada de 4
La raíz cuadrada de 12
La raíz cuadrada de 20
La raíz cuadrada de 32
Raíz cuadrada de un número negativo
se usa para significar "la raíz cuadrada de menos 1" y cualquier otra raíz negativa se expresa como múltiplos de i
. Entonces √ − 9 \u003d √9 × i
\u003d ± 3_i_. Estos problemas son más desafiantes, pero puede aprender a resolverlos según la definición de i
y las reglas estándar para las raíces.
Ejemplos de preguntas y respuestas