La tangente es una de las tres funciones trigonométricas básicas, las otras dos son seno y coseno. Estas funciones son esenciales para el estudio de los triángulos y relacionan los ángulos del triángulo con sus lados. La definición más simple de la tangente utiliza las relaciones de los lados de un triángulo rectángulo, y los métodos modernos expresan esta función como la suma de una serie infinita. Las tangentes se pueden calcular directamente cuando se conocen las longitudes de los lados del triángulo rectángulo y también se pueden derivar de otras funciones trigonométricas.
Identifique y etiquete las partes de un triángulo rectángulo. El ángulo recto estará en el vértice C, y el lado opuesto será la hipotenusa h. El ángulo x3B8; estará en el vértice A, y el vértice restante será B. El lado adyacente al ángulo x3B8; será el lado b y el ángulo opuesto al lado x3B8; será el lado a. Los dos lados de un triángulo que no son la hipotenusa se conocen como las patas del triángulo.
Define la tangente. La tangente de un ángulo se define como la relación entre la longitud del lado opuesto al ángulo y la longitud del lado adyacente al ángulo. En el caso del triángulo en el Paso 1, tan x3B8; = a /b.
Sciencing Video Vault
Cree el corchete (casi) perfecto: aquí es cómo
cree el corchete (casi) perfecto: aquí tiene cómo
Determine la tangente por un simple derecho triángulo. Por ejemplo, las patas de un triángulo rectángulo isósceles son iguales, por lo que a /b = tan x3B8; = 1. Los ángulos también son iguales, por lo que x3B8; = 45 grados. Por lo tanto, tan 45 grados = 1.
Derive la tangente de las otras funciones trigonométricas. Desde sine x3B8; = a /hy coseno x3B8; = b /h, luego sine x3B8; /cosine x3B8; = (a /h) /(b /h) = a /b = tan x3B8 ;. Por lo tanto, tan x3B8; = seno y amp; # x3B8; /cosine x3B8 ;.
Calcule la tangente para cualquier ángulo y la precisión deseada:
sen x = x - x ^ 3/3! + x ^ 5/5! - x ^ 7/7! + ... cosine x = 1 - x ^ 2/2! + x ^ 4/4! - x ^ 6/6! + ... Entonces, tan x = (x - x ^ 3/3! + X ^ 5/5! - x ^ 7/7! + ...) /(1 - x ^ 2/2! + X ^ 4 /4! - x ^ 6/6! + ...)