• Home
  • Química
  • Astronomía
  • Energía
  • Naturaleza
  • Biología
  • Física
  • Electrónica
  •  science >> Ciencia >  >> Física
    El propósito del análisis estadístico: media y desviación estándar

    Si le pide a dos personas que califiquen el mismo cuadro, a uno le puede gustar y al otro puede que lo odie. Su opinión es subjetiva y se basa en la preferencia personal. ¿Qué pasa si necesita una medida de aceptación más objetiva? Las herramientas estadísticas, como la media y la desviación estándar, permiten la medición objetiva de la opinión, o datos subjetivos, y proporcionan una base para la comparación.
    Media

    La media es un tipo de promedio. Como ejemplo, suponga que tiene tres respuestas diferentes. El primero califica la pintura en 5. El segundo califica la pintura como 10. El tercero califica la pintura como 15. La media de estas tres clasificaciones se calcula al encontrar la suma de las clasificaciones y luego dividirla por la número de respuestas de calificación.
    Cálculo de la media

    El cálculo de la media en este ejemplo es (5 + 10 + 15) /3 \u003d 10. La media se utiliza como base para comparar otras calificaciones . Una calificación que está por encima de 10 ahora se considera por encima del promedio y una calificación por debajo de 10 se considera por debajo del promedio. La media también se usa para calcular la desviación estándar.
    Desviación estándar

    La desviación estándar se usa para desarrollar una medida estadística de la varianza media. Por ejemplo, la diferencia entre la media y una calificación de 20 es 10. El primer paso para encontrar la desviación estándar es encontrar la diferencia entre la media y la calificación para cada calificación. Por ejemplo, la diferencia entre 5 y 10 es -5. La diferencia entre 10 y 10 es 0. La diferencia entre 15 y 10 es 5.
    Cálculo de desviación estándar

    Para completar el cálculo, tome el cuadrado de cada diferencia. Por ejemplo, el cuadrado de 10 es 100. El cuadrado de -5 es 25. El cuadrado de 0 es 0 y el cuadrado de 5 es 25. Halla la suma de estos y luego saca la raíz cuadrada. La respuesta es 100 + 25 + 0 + 25 \u003d 150. La raíz cuadrada de 150 es 12.24. Ahora puede comparar clasificaciones basadas tanto en la media como en la desviación estándar. Una desviación estándar es 12.24. Dos desviaciones estándar es 24.5. Tres desviaciones estándar es 36.7. Entonces, si la siguiente calificación es 22, se encuentra dentro de dos desviaciones estándar de la media.

    © Ciencia https://es.scienceaq.com