Las estadísticas tienen que ver con sacar conclusiones ante la incertidumbre. Cada vez que toma una muestra, no puede estar completamente seguro de que su muestra realmente refleje la población de la que proviene. Los estadísticos abordan esta incertidumbre tomando en cuenta los factores que podrían afectar la estimación, cuantificando su incertidumbre y realizando pruebas estadísticas para sacar conclusiones de estos datos inciertos.
Los estadísticos usan intervalos de confianza para especificar un rango de valores es probable que contenga la media de población "verdadera" sobre la base de una muestra, y exprese su nivel de certeza a través de niveles de confianza. Si bien calcular los niveles de confianza no suele ser útil, calcular los intervalos de confianza para un determinado nivel de confianza es una habilidad muy útil.
TL; DR (demasiado largo; no leído)
Calcular un intervalo de confianza para un nivel de confianza dado multiplicando el error estándar por la puntuación Z Repita el mismo proceso pero con la puntuación t Encuentre un nivel de confianza para un conjunto de datos tomando la mitad del tamaño del intervalo de confianza, multiplicándolo por la raíz cuadrada del tamaño de la muestra y luego dividiéndolo por la desviación estándar de la muestra. Busque el puntaje Z Cuando vea un estadística citada, a veces hay un rango dado después, con la abreviatura "CI" (para "intervalo de confianza") o simplemente un símbolo más-menos seguido de una figura. Por ejemplo, "el peso medio de un hombre adulto es de 180 libras (IC: 178.14 a 181.86)" o "el peso medio de un hombre adulto es de 180 ± 1.86 libras". Ambos le brindan la misma información: según la muestra usado, el peso medio de un hombre probablemente cae dentro de cierto rango. El rango en sí se llama intervalo de confianza. Si desea estar lo más seguro posible de que el rango contiene el valor verdadero, puede ampliar el rango. Esto aumentaría su "nivel de confianza" en la estimación, pero el rango cubriría más pesos potenciales. La mayoría de las estadísticas (incluida la citada anteriormente) se dan como intervalos de confianza del 95 por ciento, lo que significa que existe una probabilidad del 95 por ciento de que el valor medio verdadero esté dentro del rango. También puede usar un nivel de confianza del 99% o un nivel de confianza del 90%, según sus necesidades. Cuando usa un nivel de confianza en las estadísticas, generalmente necesita para calcular un intervalo de confianza. Esto es un poco más fácil de hacer si tiene una muestra grande, por ejemplo, más de 30 personas, porque puede usar el puntaje Z Tome sus datos sin procesar y calcule la media de la muestra (simplemente sume los resultados individuales y divídalos por el número de resultados). Calcule la desviación estándar restando la media de cada resultado individual para encontrar la diferencia y luego cuadre esta diferencia. Sume todas estas diferencias y luego divida el resultado por el tamaño de la muestra menos 1. Tome la raíz cuadrada de este resultado para encontrar la desviación estándar de la muestra (Ver Recursos). Determine el intervalo de confianza al encontrar primero el error estándar: SE Donde s SE Para encontrar el intervalo de confianza a partir de esto, busque el nivel de confianza para el que desea calcular el intervalo en un Z Media ± Z Aquí, ± 1.86 libras es el intervalo de confianza del 95 por ciento. Si tiene este bit de información, junto con el tamaño de la muestra y la desviación estándar, puede calcular el nivel de confianza utilizando la siguiente fórmula: Z El tamaño del el intervalo de confianza es solo el doble del valor ±, por lo que en el ejemplo anterior, sabemos que 0,5 veces esto es 1,86. Esto da: Z Esto nos da un valor para Z Para muestras pequeñas, existe un proceso similar para calculando el intervalo de confianza. Primero, reste 1 del tamaño de su muestra para encontrar sus “grados de libertad”. En símbolos: df Para una muestra n Encuentre su valor alfa restando la versión decimal del nivel de confianza ( es decir, su porcentaje de nivel de confianza dividido por 100) de 1 y dividiendo el resultado por 2, o en símbolos: α α Busque su valor alfa y grados de libertad en una tabla de distribución t Como en el paso anterior, calcule el intervalo de confianza multiplicando este número por el error estándar, que se determina utilizando la desviación estándar de la muestra y el tamaño de la muestra de la misma manera. La única diferencia es que en lugar de la puntuación Z
para el nivel de confianza elegido. Reste este resultado de la media de la muestra para obtener el límite inferior y agréguelo a la media de la muestra para encontrar el límite superior. (Ver Recursos)
en lugar de la puntuación Z
para muestras más pequeñas ( n
<30 ).
o t
resultante en una tabla para encontrar el nivel.
La diferencia entre Nivel de confianza vs. Intervalo de confianza
Cálculo de intervalos o niveles de confianza para muestras grandes
para su estimación en lugar de puntajes t
más complicados.
\u003d s
/√ n
es la desviación estándar de la muestra y n
es el tamaño de la muestra. Por ejemplo, si tomó una muestra de 1,000 hombres para calcular el peso promedio de un hombre, y obtuvo una desviación estándar de muestra de 30, esto daría:
\u003d 30 /√1000 \u003d 30 /31.62 \u003d 0.95
-puntuación tabla y multiplique este valor por la puntuación Z
. Para un nivel de confianza del 95 por ciento, la puntuación Z
es 1.96. Usando el ejemplo, esto significa:
× SE
\u003d 180 libras ± 1.96 × 0.95 \u003d 180 ± 1.86 libras
\u003d 0.5 × tamaño del intervalo de confianza × √ n
/ s
\u003d 1.86 × √1000 /30 \u003d 1.96
, que puede buscar en una tabla de puntuación Z
para encontrar el nivel de confianza correspondiente.
Cálculo de intervalos de confianza para muestras pequeñas
\u003d n
−1
\u003d 10, esto da df
\u003d 9.
\u003d (1 - nivel de confianza decimal) /2
Entonces, para un nivel de confianza del 95 por ciento (0.95):
\u003d (1 - 0.95) /2 \u003d 0.05 /2 \u003d 0.025
(una cola) y tome nota del resultado. Alternativamente, omita la división por 2 anterior y use un valor t
de dos colas. En este ejemplo, el resultado es 2.262.
, utiliza la puntuación t
.