Crédito:Laboratorio Nacional de Aceleradores de SLAC
Ubicado a 30 pies bajo tierra en Menlo Park, California, un tramo de túnel de media milla de largo es ahora más frío que la mayor parte del universo. Alberga un nuevo acelerador de partículas superconductoras, parte de un proyecto de actualización del láser de electrones libres de rayos X Linac Coherent Light Source (LCLS) en el Laboratorio Nacional de Aceleradores SLAC del Departamento de Energía.
Los equipos han enfriado con éxito el acelerador a menos 456 grados Fahrenheit, o 2 Kelvin, una temperatura a la que se vuelve superconductor y puede impulsar los electrones a altas energías con una pérdida de energía casi nula en el proceso. Es uno de los últimos hitos antes de que LCLS-II produzca pulsos de rayos X que son 10 000 veces más brillantes, en promedio, que los de LCLS y que llegan hasta un millón de veces por segundo, un récord mundial para los rayos X más potentes de la actualidad. fuentes de luz de rayos.
"En solo unas pocas horas, LCLS-II producirá más pulsos de rayos X que los que ha generado el láser actual en toda su vida", dice Mike Dunne, director de LCLS. "Los datos que antes podrían haber tomado meses para recopilar podrían producirse en minutos. Llevará la ciencia de rayos X al siguiente nivel, allanando el camino para toda una nueva gama de estudios y avanzando en nuestra capacidad para desarrollar tecnologías revolucionarias para abordar algunos de los los desafíos más profundos que enfrenta nuestra sociedad".
Con estas nuevas capacidades, los científicos pueden examinar los detalles de materiales complejos con una resolución sin precedentes para impulsar nuevas formas de computación y comunicaciones; revelar eventos químicos raros y fugaces para enseñarnos cómo crear industrias más sostenibles y tecnologías de energía limpia; estudiar cómo las moléculas biológicas llevan a cabo las funciones de la vida para desarrollar nuevos tipos de productos farmacéuticos; y eche un vistazo al extraño mundo de la mecánica cuántica midiendo directamente los movimientos de los átomos individuales.
Una hazaña escalofriante
LCLS, el primer láser de electrones libres de rayos X duros (XFEL) del mundo, produjo su primera luz en abril de 2009, generando pulsos de rayos X mil millones de veces más brillantes que cualquier cosa anterior. It accelerates electrons through a copper pipe at room temperature, which limits its rate to 120 X-ray pulses per second.
In 2013, SLAC launched the LCLS-II upgrade project to boost that rate to a million pulses and make the X-ray laser thousands of times more powerful. For that to happen, crews removed part of the old copper accelerator and installed a series of 37 cryogenic accelerator modules, which house pearl-like strings of niobium metal cavities. These are surrounded by three nested layers of cooling equipment, and each successive layer lowers the temperature until it reaches nearly absolute zero—a condition at which the niobium cavities become superconducting.
"Unlike the copper accelerator powering LCLS, which operates at ambient temperature, the LCLS-II superconducting accelerator operates at 2 Kelvin, only about 4 degrees Fahrenheit above absolute zero, the lowest possible temperature," said Eric Fauve, director of the Cryogenic Division at SLAC. "To reach this temperature, the linac is equipped with two world-class helium cryoplants, making SLAC one of the significant cryogenic landmarks in the U.S. and on the globe. The SLAC Cryogenics team has worked on site throughout the pandemic to install and commission the cryogenic system and cool down the accelerator in record time."
One of these cryoplants, built specifically for LCLS-II, cools helium gas from room temperature all the way down to its liquid phase at just a few degrees above absolute zero, providing the coolant for the accelerator.
On April 15, the new accelerator reached its final temperature of 2 K for the first time and today, May 10, the accelerator is ready for initial operations.
"The cooldown was a critical process and had to be done very carefully to avoid damaging the cryomodules," said Andrew Burrill, director of SLAC's Accelerator Directorate. "We're excited that we've reached this milestone and can now focus on turning on the X-ray laser."
Bringing it to life
In addition to a new accelerator and a cryoplant, the project required other cutting-edge components, including a new electron source and two new strings of undulator magnets that can generate both "hard" and "soft" X-rays. Hard X-rays, which are more energetic, allow researchers to image materials and biological systems at the atomic level. Soft X-rays can capture how energy flows between atoms and molecules, tracking chemistry in action and offering insights into new energy technologies. To bring this project to life, SLAC teamed up with four other national labs—Argonne, Berkeley Lab, Fermilab and Jefferson Lab—and Cornell University.
Jefferson Lab, Fermilab and SLAC pooled their expertise for research and development on cryomodules. After constructing the cryomodules, Fermilab and Jefferson Lab tested each one extensively before the vessels were packed and shipped to SLAC by truck. The Jefferson Lab team also designed and helped procure the elements of the cryoplants.
"The LCLS-II project required years of effort from large teams of technicians, engineers and scientists from five different DOE laboratories across the U.S. and many colleagues from around the world," says Norbert Holtkamp, SLAC deputy director and the project director for LCLS-II. "We couldn't have made it to where we are now without these ongoing partnerships and the expertise and commitment of our collaborators."
Toward first X-rays
Now that the cavities have been cooled, the next step is to pump them with more than a megawatt of microwave power to accelerate the electron beam from the new source. Electrons passing through the cavities will draw energy from the microwaves so that by the time the electrons have passed through all 37 cryomodules, they'll be moving close to the speed of light. Then they'll be directed through the undulators, forcing the electron beam on a zigzag path. If everything is aligned just right—to within a fraction of the width of a human hair—the electrons will emit the world's most powerful bursts of X-rays.
This is the same process that LCLS uses to generate X-rays. However, since LCLS-II uses superconducting cavities instead of warm copper cavities based on 60-year-old technology, it can can deliver up to a million pulses per second, 10,000 times the number of X-ray pulses for the same power bill.
Once LCLS-II produces its first X-rays, which is expected to happen later this year, both X-ray lasers will work in parallel, allowing researchers to conduct experiments over a wider energy range, capture detailed snapshots of ultrafast processes, probe delicate samples and gather more data in less time, increasing the number of experiments that can be performed. It will greatly expand the scientific reach of the facility, allowing scientists from across the nation and around the world to pursue the most compelling research ideas. Upgraded X-ray laser shows its soft side