$$\overrightarrow v_i=v_i\cos\theta\hat{i}+v_i\sin\theta\hat{j}=(25\cos35\grados)\hat{i}+(25\sin35\grados)\sombrero {j},$$
$$t=2.55\text{ s},$$
$$y_f=0,$$
$$a_y=-g=-9.8\text{ m/s}^2.$$
El rango (distancia horizontal) es:
$$x_f=x_i+v_{xi}t=\left[(25\cos35\grado)(2.55\text{ s})\right]\hat{i}=\boxed{49.3\text{ m}}$ $
La altura máxima es:
$$y_{max}=y_i+v_{yi}t+\frac{1}{2}a_yt^2=0+\left[(25\sin35\title)(2.55\text{ s})\right]+ \frac{1}{2}(-9,8\text{ m/s}^2)(2,55\text{ s})^2$$
$$y_{max}=\boxed{16.3\text{ m}}$$