• Home
  • Química
  • Astronomía
  • Energía
  • Naturaleza
  • Biología
  • Física
  • Electrónica
  • Fabricación de nanosuperconductores 3-D con ADN

    Una ilustración que muestra cómo se pueden crear materiales superconductores 3D altamente nanoestructurados basados ​​en el autoensamblaje del ADN. Crédito:Laboratorio Nacional Brookhaven

    Los materiales nanoestructurados tridimensionales (3-D), aquellos con formas complejas en una escala de tamaño de mil millonésimas de metro, que pueden conducir electricidad sin resistencia, podrían usarse en una variedad de dispositivos cuánticos. Por ejemplo, tales nanoestructuras superconductoras tridimensionales podrían encontrar aplicación en amplificadores de señal para mejorar la velocidad y precisión de las computadoras cuánticas y sensores de campo magnético ultrasensibles para imágenes médicas y mapeo geológico del subsuelo. Sin embargo, Las herramientas de fabricación tradicionales, como la litografía, se han limitado a nanoestructuras 1-D y 2-D como cables superconductores y películas delgadas.

    Ahora, científicos del Laboratorio Nacional Brookhaven del Departamento de Energía de EE. UU. (DOE), Universidad de Colombia, y la Universidad Bar-Ilan en Israel han desarrollado una plataforma para hacer nanoarquitecturas superconductoras 3D con una organización prescrita. Como se informó en la edición del 10 de noviembre de Comunicaciones de la naturaleza, esta plataforma se basa en el autoensamblaje de ADN en las formas 3-D deseadas a nanoescala. En el autoensamblaje de ADN, una sola hebra larga de ADN está plegada por hebras "básicas" complementarias más cortas en ubicaciones específicas, similar al origami, el arte japonés del plegado de papel.

    "Debido a su programabilidad estructural, El ADN puede proporcionar una plataforma de ensamblaje para construir nanoestructuras diseñadas, "dijo el coautor correspondiente Oleg Gang, líder del Grupo de Nanomateriales Blandos y Bio en el Centro de Nanomateriales Funcionales (CFN) de Brookhaven Lab y profesor de ingeniería química y de física aplicada y ciencia de los materiales en Columbia Engineering. "Sin embargo, la fragilidad del ADN hace que parezca inadecuado para la fabricación de dispositivos funcionales y la nanofabricación que requiere materiales inorgánicos. En este estudio, mostramos cómo el ADN puede servir como un andamio para construir arquitecturas de nanoescala 3-D que se pueden "convertir" completamente en materiales inorgánicos como superconductores ".

    Para hacer el andamio los científicos de Brookhaven y Columbia Engineering diseñaron por primera vez "marcos" de origami de ADN con forma octaédrica. Aaron Michelson, Estudiante de posgrado de la pandilla, aplicó una estrategia programable por ADN para que estos marcos se ensamblaran en las celosías deseadas. Luego, usó una técnica química para recubrir las redes de ADN con dióxido de silicio (sílice), solidificando las construcciones originalmente blandas, que requería un ambiente líquido para preservar su estructura. El equipo adaptó el proceso de fabricación para que las estructuras fueran fieles a su diseño, como lo confirman las imágenes en la instalación de microscopía electrónica CFN y la dispersión de rayos X de ángulo pequeño en la línea de haz de dispersión de materiales complejos de la fuente de luz sincrotrón nacional II de Brookhaven (NSLS-II). Estos experimentos demostraron que la integridad estructural se conservó después de que recubrieron las redes de ADN.

    "En su forma original, El ADN es completamente inutilizable para el procesamiento con métodos de nanotecnología convencionales, ", dijo Gang." Pero una vez que cubrimos el ADN con sílice, contamos con una arquitectura tridimensional mecánicamente robusta en la que podemos depositar materiales inorgánicos utilizando estos métodos. Esto es análogo a la nanofabricación tradicional, en el que los materiales valiosos se depositan sobre sustratos planos, típicamente silicio, para agregar funcionalidad ".

    El equipo envió las redes de ADN recubiertas de sílice desde el CFN al Instituto de Superconductividad de Bar-Ilan, que está encabezado por Yosi Yeshurun. Gang y Yeshurun ​​se conocieron hace un par de años, cuando Gang impartió un seminario sobre su investigación de ensamblaje de ADN. Yeshurun, quien durante la última década ha estado estudiando las propiedades de la superconductividad a nanoescala, pensó que el enfoque basado en el ADN de Gang podría proporcionar una solución a un problema que estaba tratando de resolver:¿Cómo podemos fabricar estructuras superconductoras a nanoescala en tres dimensiones?

    "Previamente, La fabricación de nanosuperconductores 3-D implicó un proceso muy elaborado y difícil utilizando técnicas de fabricación convencionales, "dijo Yeshurun, coautor correspondiente. "Aquí, encontramos una forma relativamente sencilla de utilizar las estructuras de ADN de Oleg ".

    En el Instituto de Superconductividad, El estudiante de posgrado de Yeshurun, Lior Shani, evaporó un superconductor de baja temperatura (niobio) en un chip de silicio que contenía una pequeña muestra de las celosías. La velocidad de evaporación y la temperatura del sustrato de silicio tuvieron que controlarse cuidadosamente para que el niobio cubriera la muestra pero no penetrara completamente. Si eso sucediera, podría producirse un cortocircuito entre los electrodos utilizados para las mediciones de transporte electrónico.

    "Cortamos un canal especial en el sustrato para asegurarnos de que la corriente solo atraviese la muestra en sí, "explicó Yeshurun.

    Las mediciones revelaron una matriz tridimensional de uniones Josephson, o barreras delgadas no superconductoras a través de las cuales la corriente superconductora forma túneles. Las matrices de uniones de Josephson son clave para aprovechar los fenómenos cuánticos en tecnologías prácticas, como los dispositivos de interferencia cuántica superconductores para la detección de campos magnéticos. En 3-D, se pueden empaquetar más uniones en un volumen pequeño, aumentar la potencia del dispositivo.

    "El origami de ADN ha estado produciendo hermosas y ornamentadas estructuras a nanoescala en 3D durante casi 15 años, pero el ADN en sí no es necesariamente un material funcional útil, "dijo Evan Runnerstrom, gerente de programa de diseño de materiales en el Laboratorio de Investigación del Ejército del Comando de Desarrollo de Capacidades de Combate del Ejército de los EE. UU. de la Oficina de Investigación del Ejército de los EE. UU. que financió el trabajo en parte. "Lo que el profesor Gang ha demostrado aquí es que puede aprovechar el origami de ADN como plantilla para crear nanoestructuras tridimensionales útiles de materiales funcionales, como el niobio superconductor. Esta capacidad de diseñar y fabricar arbitrariamente materiales funcionales complejos estructurados en 3-D desde abajo hacia arriba acelerará los esfuerzos de modernización del Ejército en áreas como la detección, óptica, y computación cuántica ".

    "Demostramos un camino sobre cómo las organizaciones de ADN complejas se pueden utilizar para crear materiales superconductores 3D altamente nanoestructurados, ", dijo Gang." Esta vía de conversión de material nos da la capacidad de crear una variedad de sistemas con propiedades interesantes, no solo superconductividad sino también otros componentes electrónicos, mecánico, óptico, y propiedades catalíticas. Podemos imaginarlo como una "litografía molecular, "donde el poder de la programabilidad del ADN se transfiere a la nanofabricación inorgánica 3-D".


    © Ciencia https://es.scienceaq.com